Бурно развивающаяся авиация, космическая техника и другие области науки и техники требовали миниатюрных, надежных и быстрых вычислительных устройств. Поэтому дальнейшее развитие электронной вычислительной техники требовало разработки новой технологии, и такая технология не замедлила появиться. Новый прорыв в производительности, надежности и миниатюризации позволила сделать технология интегральных схем, ознаменовавшая собой переход на третье поколение ЭВМ, создаваемых с 1964 по 1974 г.г.
Использование интегральных схем позволило получить ряд преимуществ:
1. Увеличилась надежность ЭВМ. Надежность интегральных схем – на порядок выше надежности аналогичных схем на дискретных компонентах.[2] Повышение надежности, в первую очередь, обусловлено уменьшением межсхемных соединений, являющихся одним из слабейших звеном в конструкции ЭВМ. Повышение надежности, в свою очередь, привело к значительному снижению стоимости эксплуатации ЭВМ.
2. За счет повышения плотности упаковки электронных схем, уменьшилось время передачи сигнала по проводникам и, как следствие, увеличилось быстродействие ЭВМ.
3. Производство интегральных схем хорошо поддается автоматизации, что при серийном производстве резко уменьшает себестоимость производства и способствует популяризации и расширению области применения ЭВМ.
4. Высокая плотность упаковки электронных схем уменьшила на несколько порядков габариты, массу и потребляемую мощность ЭВМ, что позволило использовать их в недоступных до этого областях науки и техники, таких как авиация и космическая техника.
Несмотря на явные преимущества использования технологии интегральных схем, на практике их массовое применение в ЭВМ началось спустя 12 лет, после разработки концепции интегральной схемы, опубликованной в 1952 году Джеффри Даммером из британского министерства обороны.
В мае 1958 года Джек Килби устроился на работу в Texas Instruments, где он стал заниматься разработкой транзисторов, конденсаторов и резисторов (до этого он работал в Centralab и занимался производством слуховых аппаратов на базе транзисторов). Однажды команда, в которой работал Джек Килби, получила задание проработать варианты создания альтернативных микромодулей. Предлагались различные варианты, и Килби, обдумывая задачу, пришел к выводу, что компании выгоднее всего производить только полупроводниковые элементы, и что резисторы и конденсаторы можно сделать из того же материала, что и активные элементы, и разместить их в едином монолитном блоке из того же материала. Обдумывая эту идею, Джек прикинул топологию схемы мультивибратора. Так 24 июля 1958г. родилась идея практической реализации интегральной схемы.
12 сентября 1958 года было готово три микросхемы, работающие на частоте 1.3 МГц.
Параллельно с Джеком Килби разработкой интегральной микросхемы занимался Роберт Нойс. Роберту крайне не нравилась технология производства дискретных элементов. Он говорил, что довольно бессмысленным выглядит трудоемкий процесс нарезаний пластины кремния на отдельные элементы, а затем соединение их в единую схему. Нойс предложил изолировать отдельные транзисторы в кристалле друг от друга обратно смещенными p-n-переходами, а поверхность покрывать изолирующим окислом. Контакт между отдельными элементами осуществлялся через вытравленные в изолирующем окисле по специальному шаблону участки на поверхности микросхемы. Эти участки соединялись между собой тонкими линиями из алюминия.
Килби создал свою микросхему и подал заявку на патент чуть раньше Нойса, однако, технология Нойса была более продуманной и удобной, и документы на заявку подготовлены тщательнее. В результате, патент на изобретение Нойс получил раньше – в апреле 1961 года, а Килби – только в июне 1964 года.
Серийный выпуск интегральных схем был налажен в 1961 году, тогда же была создана фирмой " Texas Instruments" по заказу ВВС США первая экспериментальная ЭВМ на интегральных схемах. Разработка велась 9 месяцев и была завершена в 1961г. ЭВМ имела всего 15 команд, была одноадресной, тактовая частота была 100 КГц, емкость запоминающего устройства – всего 30 чисел, для представления чисел использовалось 11 двоичных разрядов, потребляемая мощность составляла всего 16Вт, вес – 585гр, занимаемый объем – 100 кубических сантиметров.
Первые интегральные схемы были малой плотности, но со временем технология их производства отлаживалась, плотность возрастала. В ЭВМ третьего поколения использовались интегральные схемы малой и средней плотности, позволяющие в одном кристалле объединять сотни элементов. Такие микросхемы могли использоваться, как отдельные операционные схемы – регистры, дешифраторы, счетчики и т.д.
Появление интегральных схем позволило усовершенствовать структурную схему ЭВМ второго поколения. Так сильно связанные устройства управления (УУ) и арифметико-логическое устройство (АЛУ) были объедены в единый блок, который стал называться процессором. Причем, в процессоре могло быть несколько арифметико-логических устройств, каждое из которых выполняло свою функцию, например, одно АЛУ было ориентированно на работу с целыми числами, другое – с числами с плавающей точкой, а третье – с адресами.
Часто ЭВМ состояли из нескольких процессоров, что позволяло максимально полно использовать открывшиеся перспективы в параллельном решении задач.
В ЭВМ третьего поколение уже четко выделяется иерархия памяти. ОЗУ делится на независимые блоки с собственными системами управления, работающие параллельно. Структура оперативной памяти делится на страницы и сегменты.Развивается и внутренняя память процессора – создаются предпосылки к вводу кэширования памяти.
Накопитель был герметичным – это защищало рабочие поверхности дисков от пыли и грязи, что позволяло размещать головки очень близко к магнитной поверхности диска. Впервые, был применен принцип аэродинамической магнитной головки, которая буквально парила над вращающейся поверхностью жесткого диска под действием аэродинамической силы.
Все это позволило значительно увеличить плотность записи (до 1.7 Мбит на квадратный дюйм) и увеличить емкость до 30 Мбайт (на несменном носителе). Также у накопителя имелся сменный носитель емкостью 30 Мбайт.
Наряду с совершенствованием логических устройств и памяти, полным ходом шла модернизация устройств ввода-вывода. Быстродействие новых ЭВМ требовало более быстрой и надежной системы ввода-вывода данных, чем устройства чтения перфокарт и телетайпы. На смену им пришли клавиатуры, панели графического ввода, дисплеи со световым карандашом, плазменные панели, растровые графические системы и другие устройства.
Большое разнообразие периферийных устройств, их сравнительно большое быстродействие, необходимость отделить операции ввода-вывода от вычислительного процесса привело к созданию специализированного контроллера мультиплексного канала (КМК), позволившего процессорам работать параллельно с вводом-выводом данных.
Обобщенная структурная схема ЭВМ третьего поколения, иллюстрирующая вышесказанное, изображена на схеме ниже.
На схеме:
УВВ – устройство ввода-вывода;
ОЗУ – одно или несколько оперативных запоминающих устройств;
АЛУ - одно или несколько арифметико-логических устройств;
УУ - одно или несколько устройств управления;
МК - контроллер мультиплексного канала (канала для подключения медленных устройств);
СК - контроллер селекторного канала (канала для подключения высокоскоростных устройств);
ВЗУ – внешнее запоминающее устройство.
ОЗУ – одно или несколько оперативных запоминающих устройств;
АЛУ - одно или несколько арифметико-логических устройств;
УУ - одно или несколько устройств управления;
МК - контроллер мультиплексного канала (канала для подключения медленных устройств);
СК - контроллер селекторного канала (канала для подключения высокоскоростных устройств);
ВЗУ – внешнее запоминающее устройство.
Использование интегральных технологий значительно снизило стоимость ЭВМ, что незамедлительно привело к повышению спроса. Многие организации приобрели ЭВМ и успешно их эксплуатировали. Немаловажным фактором становится стремление к стандартизации и выпуску целых серий ЭВМ программно совместимых снизу вверх.
Возникает огромная потребность в прикладных программных продуктах, а так как рынок программного обеспечения еще не развит, и найти готовое, надежное и дешевое программное обеспечение практически невозможно, возникает гигантский рост популярности программирования и спроса на грамотных разработчиков программных продуктов. Каждое предприятие стремится организовать свой штат программистов, возникает специализированные коллективы, занимающиеся разработкой программного обеспечения и стремящиеся занять кусочек еще неосвоенной ниши на арене быстро растущей компьютерной технологии.
Рынок программного обеспечения быстро развивается, создаются пакеты программ для решения типовых задач, проблемно-ориентированные программные языки и целые программные комплексы для управления работой ЭВМ, которые впоследствии получат название – операционные системы.
Комментариев нет:
Отправить комментарий